Internet Security, Identity Theft, Recent IT Trend, EV, SSL Digital Certificate Technology

Hi,I am Yuvaraj (Yuvi),From my recent readings I analysed that Internet Security is the need of the hour, so was interested in covering IT, Technology & Security Industry News on my webblog. This Blog would also share and discuss about the imporatance of Secure EV SSL Digital Certificate Technology, VPN and other related online website security measures. If you wish you read my internet marketing blog visit

My Photo
Location: Chennai, Tamilnadu, India

Ah! The toughfest question....but to point out a few firstly its my Job and then I am interested in Online Marketing, Internet Security Awareness, Blogging, Computers & Internet and so on.....

Thursday, September 20, 2007

SSL Encryption and its Methodologies | Encryption Systems | Symmetric Key | Public-key encryption | Authentication | Digital signatures | IT Security

I have been receiving mails for quite a long time asking how does encryption work i.e. the Public Key and Private Key work. So I was wondering how to explain them with examples. So I got a very good simple stuff from the web, which is really very good content. Here’s the extract for you. Though this is pretty big content, its worth reading. Also visit

What is SSL Encryption and why is it required?

SSL Encryption or Https is a technique used to safeguard private information which is sent via Internet. To prove the site's legitimacy, the SSL encryption uses a PKI (Public Key Infrastructure) - public/private key, to encrypt IDs, documents, or messages to securely transmit the information in the World Wide Web. In order to show that our transmission is encrypted, most browsers will display a small icon that would look like a pad “lock” or a key and the URL begins with "https" instead of "http”. SSL Encryption or https from a digital certification authority will help a secure site with confidential information on web.

Encryption Systems

Computer encryption is based on the science of cryptography, which has been used throughout history. Before the digital age, the biggest users of cryptography were governments, particularly for military purposes. The existence of coded messages has been verified as far back as the Roman Empire. But most forms of cryptography in use these days rely on computers, simply because a human-based code is too easy for a computer to crack.

Most computer encryption systems belong in one of two categories:

Symmetric-key encryption
Public-key encryption

Symmetric Key

In symmetric-key encryption, each computer has a secret key (code) that it can use to encrypt a packet of information before it is sent over the network to another computer. Symmetric-key requires that you know which computers will be talking to each other so you can install the key on each one. Symmetric-key encryption is essentially the same as a secret code that each of the two computers must know in order to decode the information. The code provides the key to decoding the message. Think of it like this: You create a coded message to send to a friend in which each letter is substituted with the letter that is two down from it in the alphabet. So "A" becomes "C," and "B" becomes "D". You have already told a trusted friend that the code is "Shift by 2". Your friend gets the message and decodes it. Anyone else who sees the message will see only nonsense

Public Key

Public-key encryption uses a combination of a private key and a public key. The private key is known only to your computer, while the public key is given by your computer to any computer that wants to communicate securely with it. To decode an encrypted message, a computer must use the public key, provided by the originating computer, and its own private key. A very popular public-key encryption utility is called Pretty Good Privacy (PGP), which allows you to encrypt almost anything.

To implement public-key encryption on a large scale, such as a secure Web server might need, requires a different approach. This is where digital certificates come in. A digital certificate is basically a bit of information that says that the Web server is trusted by an independent source known as a certificate authority. The certificate authority acts as a middleman that both computers trust. It confirms that each computer is in fact who it says it is, and then provides the public keys of each computer to the other.

The Process of Symmetric and Public Key in action.

For example in case of an email - The sending computer encrypts the document with a symmetric key, then encrypts the symmetric key with the public key of the receiving computer. The receiving computer uses its private key to decode the symmetric key. It then uses the symmetric key to decode the document.

Public Key: SSL

A popular implementation of public-key encryption is the Secure Sockets Layer (SSL). Originally developed by Netscape, SSL is an Internet security protocol used by Internet browsers and Web servers to transmit sensitive information. SSL has become part of an overall security protocol known as Transport Layer Security (TLS).

In your browser, you can tell when you are using a secure protocol, such as TLS, in a couple of different ways. You will notice that the "http" in the address line is replaced with "https," and you should see a small padlock in the status bar at the bottom of the browser window.

Public-key encryption takes a lot of computing, so most systems use a combination of public-key and symmetry. When two computers initiate a secure session, one computer creates a symmetric key and sends it to the other computer using public-key encryption. The two computers can then communicate using symmetric-key encryption. Once the session is finished, each computer discards the symmetric key used for that session. Any additional sessions require that a new symmetric key be created, and the process is repeated.

Hashing AlgorithmsThe key in public-key encryption is based on a hash value. This is a value that is computed from a base input number using a hashing algorithm. Essentially, the hash value is a summary of the original value. The important thing about a hash value is that it is nearly impossible to derive the original input number without knowing the data used to create the hash value. Here's a simple example:
You can see how hard it would be to determine that the value 1,525,381 came from the multiplication of 10,667 and 143. But if you knew that the multiplier was 143, then it would be very easy to calculate the value 10,667. Public-key encryption is actually much more complex than this example, but that is the basic idea.

Public keys generally use complex algorithms and very large hash values for encrypting, including 40-bit or even 128-bit numbers. A 128-bit number has a possible 2128 or 3,402,823,669,209,384,634,633,746,074,300,000,000,000, 000,000,000,000,000,000,000,000,000 different combinations! This would be like trying to find one particular grain of sand in the Sahara Desert.


As stated earlier, encryption is the process of taking all of the data that one computer is sending to another and encoding it into a form that only the other computer will be able to decode. Another process, authentication, is used to verify that the information comes from a trusted source. Basically, if information is "authentic," you know who created it and you know that it has not been altered in any way since that person created it. These two processes, encryption and authentication, work hand-in-hand to create a secure environment.

There are several ways to authenticate a person or information on a computer:

Password - The use of a user name and password provides the most common form of authentication. You enter your name and password when prompted by the computer. It checks the pair against a secure file to confirm. If either the name or the password does not match, then you are not allowed further access.

Pass cards - These cards can range from a simple card with a magnetic strip, similar to a credit card, to sophisticated smart cards that have an embedded computer chip.

Digital signatures - A digital signature is basically a way to ensure that an electronic document (e-mail, spreadsheet, text file) is authentic. The Digital Signature Standard (DSS) is based on a type of public-key encryption method that uses the Digital Signature Algorithm (DSA). DSS is the format for digital signatures that has been endorsed by the U.S. government. The DSA algorithm consists of a private key, known only by the originator of the document (the signer), and a public key. The public key has four parts, which you can learn more about at this page. If anything at all is changed in the document after the digital signature is attached to it, it changes the value that the digital signature compares to, rendering the signature invalid.

Recently, more sophisticated forms of authentication have begun to show up on home and office computer systems. Most of these new systems use some form of biometrics for authentication. Biometrics uses biological information to verify identity. Biometric authentication methods include:

Fingerprint scan
Retina scan
Face scan
Voice identification

Checking for Corruption

Another secure-computing need is to ensure that the data has not been corrupted during transmission or encryption. There are a couple of popular ways to do this:

- Probably one of the oldest methods of ensuring that data is correct, checksums also provide a form of authentication because an invalid checksum suggests that the data has been compromised in some fashion. A checksum is determined in one of two ways. Let's say the checksum of a packet is 1 byte long. A byte is made up of 8 bits, and each bit can be in one of two states, leading to a total of 256 (28 ) possible combinations. Since the first combination equals zero, a byte can have a maximum value of 255.

If the sum of the other bytes in the packet is 255 or less, then the checksum contains that exact value.

If the sum of the other bytes is more than 255, then the checksum is the remainder of the total value after it has been divided by 256.

Let's look at a checksum example

· 1,151 / 256 = 4.496 (round to 4)
· 4 x 256 = 1,024
· 1,151 - 1,024 = 127

Cyclic Redundancy Check (CRC) - CRCs are similar in concept to checksums, but they use polynomial division to determine the value of the CRC, which is usually 16 or 32 bits in length. The good thing about CRC is that it is very accurate. If a single bit is incorrect, the CRC value will not match up. Both checksum and CRC are good for preventing random errors in transmission but provide little protection from an intentional attack on your data. Symmetric- and public-key encryption techniques are much more secure.

All of these various processes combine to provide you with the tools you need to ensure that the information you send or receive over the Internet is secure. In fact, sending information over a computer network is often much more secure than sending it any other way. Phones, especially cordless phones, are susceptible to eavesdropping, particularly by unscrupulous people with radio scanners. Traditional mail and other physical mediums often pass through numerous hands on the way to their destination, increasing the possibility of corruption. Understanding encryption, and simply making sure that any sensitive information you send over the Internet is secure (remember the "https" and padlock symbol), can provide you with greater peace of mind.

A part of the material is extracted from the following
Please fill out this form to help you serve better: Internet Security Feedback Form

Labels: , , , , ,